Draw a picture of a living organism you find in the garden. Include as much detail as possible. Afterwards, write down the adaptations you observe.

<table>
<thead>
<tr>
<th>Behaviors/Body Structures</th>
<th>Possible Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Explore the garden and find 2 different but similar plants. Write down your observations in the Venn diagram below. Add the plant differences in the outer circles and the similarities in the inner space.
Common Seed Dispersal Methods

GRAVITY
Heavy seeds fall to the ground.

Walnuts fall to the ground and roll

WIND
Lightweight seeds flutter in the air

Dandelion seeds float

WATER
Waterproof seeds float on water

Coconuts float on water for long distances

ANIMALS
Animals either eat seeds or seeds stick to the outside of animals

Cocklebur seeds have little hooks
Seed Model Sketch

<table>
<thead>
<tr>
<th>Dispersal Method</th>
<th>Trial 1</th>
<th>Trial 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Did it fly?</td>
<td>How far?</td>
<td>How far?</td>
</tr>
<tr>
<td></td>
<td>_____ inches</td>
<td>_____ inches</td>
</tr>
<tr>
<td>Did it float on water?</td>
<td>How long?</td>
<td>How long?</td>
</tr>
<tr>
<td></td>
<td>_____ seconds</td>
<td>_____ seconds</td>
</tr>
<tr>
<td>Did it stick?</td>
<td>How long?</td>
<td>How long?</td>
</tr>
<tr>
<td></td>
<td>_____ seconds</td>
<td>_____ seconds</td>
</tr>
</tbody>
</table>

How I can improve my design:

Pollinator Experiment

I PREDICT THE MOST POLLINATORS WILL BE FOUND...

LOCATION #1:

<table>
<thead>
<tr>
<th>Date</th>
<th>Weather</th>
<th>Number of Pollinators</th>
<th>Plants Near Observation Site</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION #2:

<table>
<thead>
<tr>
<th>Date</th>
<th>Weather</th>
<th>Number of Pollinators</th>
<th>Plants Near Observation Site</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pollinator Experiment

RESULTS

<table>
<thead>
<tr>
<th>Day</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>15</td>
</tr>
<tr>
<td>Day 2</td>
<td>10</td>
</tr>
<tr>
<td>Day 3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

CONCLUSION: I LEARNED THAT...
Name:

Date:

I want to grow

When to plant

Plant spacing

Number of plants per square foot

Problem 1: \(\frac{12}{\text{plant spacing number}} = \frac{12}{\text{_____}} = \text{_____} \)

Problem 2: \(\text{Answer to problem 1} \times \text{Answer to problem 1} \)

\(\text{_____} \times \text{_____} = \text{_____} \)

How deep to plant the seed

How should you take care of the plant?

How and when should you harvest your plant?